skip to main content


Search for: All records

Creators/Authors contains: "Chen, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 1-Decanol has great value in the pharmaceutical and fragrance industries and plays an important role in the chemical industry. In this study, we engineered Escherichia coli to selectively synthesize 1-decanol by using enzymes of the core reverse β-oxidation (rBOX) pathway and termination module with overlapping chain-length specificity. Through screening for acyl-CoA reductase termination enzymes and proper regulation of rBOX pathway expression, a 1-decanol titer of 1.4 g/L was achieved. Further improvements were realized by engineering pyruvate dissimilation to ensure the generation of NADH through pyruvate dehydrogenase (PDH) and reducing byproduct synthesis via a tailored YigI thioesterase knockout, increasing 1-decanol titer to 1.9 g/L. The engineered strain produced about 4.4 g/L 1-decanol with a yield of 0.21 g/g in 36 h in a bi-phasic fermentation that used a dodecane overlay to increase 1-decanol transport and reduce its toxicity. Adjustment of pathway expression (varying inducer concentration) and cell growth (oxygen availability) enabled 1-decanol production at 6.1 g/L (0.26 g/g yield) and 10.05 g/L (0.2 g/g yield) using rich medium in shake flasks and bioreactor, respectively. Remarkably, the use of minimal medium resulted in 1-decanol production with 100% specificity at 2.8 g/L (0.14 g/g yield) and a per cell mass yield higher than rich medium. These 1-decanol titers, yields and purity are at least 10-fold higher than others reported to date and the engineered strain shows great potential for industrial production. Taken together, our findings suggest that using rBOX pathway and termination enzymes of proper chain-length specificity in combination with optimal chassis engineering should be an effective approach for the selective production of alcohols. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Flood warnings can be communicated through mobile devices and should convey enough information to keep the user safe during a flood situation. However, the amount of detail included in the warning, such as the depth of the flood, may vary. The purpose of this study was to investigate how to best inform drivers of floods to keep them protected. Participants were tasked to drive to a restaurant in a driving simulator after receiving instructions and a type of flood information warning during each scenario (flood, no flood, flood of 6 inches, flood of 6 inches maximum). We found that participants accepted the alternate route more when in a scenario with a flood present compared to the no-flood scenario. These results deepened the understanding of human decisionmaking and can guide future flood warning designs to keep drivers protected from flooded roadways

     
    more » « less
  3. Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene—substantial global SOA sources—through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA. 
    more » « less
    Free, publicly-accessible full text available November 17, 2024
  4. Abstract

    Mitochondrial DNA (mtDNA) is known to play a critical role in cellular functions. However, the fluorescent probe enantio-selectively targeting live-cell mtDNA is rare. We recently found that the well-known DNA ‘light-switch’ [Ru(phen)2dppz]Cl2 can image nuclear DNA in live-cells with chlorophenolic counter-anions via forming lipophilic ion-pairing complex. Interestingly, after washing with fresh-medium, [Ru(phen)2dppz]Cl2 was found to re-localize from nucleus to mitochondria via ABC transporter proteins. Intriguingly, the two enantiomers of [Ru(phen)2dppz]Cl2 were found to bind enantio-selectively with mtDNA in live-cells not only by super-resolution optical microscopy techniques (SIM, STED), but also by biochemical methods (mitochondrial membrane staining with Tomo20-dronpa). Using [Ru(phen)2dppz]Cl2 as the new mtDNA probe, we further found that each mitochondrion containing 1–8 mtDNA molecules are distributed throughout the entire mitochondrial matrix, and there are more nucleoids near nucleus. More interestingly, we found enantio-selective apoptotic cell death was induced by the two enantiomers by prolonged visible light irradiation, and in-situ self-monitoring apoptosis process can be achieved by using the unique ‘photo-triggered nuclear translocation’ property of the Ru complex. This is the first report on enantio-selective targeting and super-resolution imaging of live-cell mtDNA by a chiral Ru complex via formation and dissociation of ion-pairing complex with suitable counter-anions.

     
    more » « less
  5. Objective We investigated secondary–task–based countermeasures to the vigilance decrement during a simulated partially automated driving (PAD) task, with the goal of understanding the underlying mechanism of the vigilance decrement and maintaining driver vigilance in PAD. Background Partial driving automation requires a human driver to monitor the roadway, but humans are notoriously bad at monitoring tasks over long periods of time, demonstrating the vigilance decrement in such tasks. The overload explanations of the vigilance decrement predict the decrement to be worse with added secondary tasks due to increased task demands and depleted attentional resources, whereas the underload explanations predict the vigilance decrement to be alleviated with secondary tasks due to increased task engagement. Method Participants watched a driving video simulating PAD and were required to identify hazardous vehicles throughout the 45-min drive. A total of 117 participants were assigned to three different vigilance-intervention conditions including a driving-related secondary task (DR) condition, a non-driving-related secondary task (NDR) condition, and a control condition with no secondary tasks. Results Overall, the vigilance decrement was shown over time, reflected in increased response times, reduced hazard detection rates, reduced response sensitivity, shifted response criterion, and subjective reports on task-induced stress. Compared to the DR and the control conditions, the NDR displayed a mitigated vigilance decrement. Conclusion This study provided convergent evidence for both resource depletion and disengagement as sources of the vigilance decrement. Application The practical implication is that infrequent and intermittent breaks using a non-driving related task may help alleviate the vigilance decrement in PAD systems. 
    more » « less
    Free, publicly-accessible full text available May 15, 2024
  6. Photo sharing has become increasingly easy with the rise of social media. Social networking sites (SNSs), such as Instagram and Facebook, are well known for their image-sharing capabilities. However, this brings the concern of photo privacy, such as who may see the images of a user who is included in a post. Photo privacy settings offer detailed and more secure ways to share a user’s photos, however, this would require SNS users to understand these settings. To better grasp users’ understanding of photo privacy settings, we conducted a structured interview with Instagram users. We found that users were aware of the majority of the privacy settings asked about and that they accurately perceived their photo privacy safety based on their knowledge of photo privacy settings.

     
    more » « less
  7. Abstract

    This paper is concerned with a degenerate and time delayed virus infection model with spatial heterogeneity and general incidence. The well‐posedness of the system, including global existence, uniqueness, and ultimately boundedness of the solutions, as well as the existence of a global attractor, is discussed. The basic reproduction number is defined and a characterization of is presented. Without the compactness of the solution semiflow, we establish the global dynamics of the system based on . In addition, when the system is spatially homogeneous, the unique infection steady state is globally asymptotically stable. Simulations are presented to illustrate our theoretical results.

     
    more » « less